H(t)=-16t^2+11t+33

Simple and best practice solution for H(t)=-16t^2+11t+33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+11t+33 equation:



(H)=-16H^2+11H+33
We move all terms to the left:
(H)-(-16H^2+11H+33)=0
We get rid of parentheses
16H^2-11H+H-33=0
We add all the numbers together, and all the variables
16H^2-10H-33=0
a = 16; b = -10; c = -33;
Δ = b2-4ac
Δ = -102-4·16·(-33)
Δ = 2212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2212}=\sqrt{4*553}=\sqrt{4}*\sqrt{553}=2\sqrt{553}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{553}}{2*16}=\frac{10-2\sqrt{553}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{553}}{2*16}=\frac{10+2\sqrt{553}}{32} $

See similar equations:

| -12=4e | | 16u-7u=9 | | -y+6=X | | 6x^2+20+23x=0 | | 8z^2+10z+12=0 | | -3(1+8n)=2+2n | | 3/4(8x+12)=25.8 | | 14.5x+1.5=-31 | | 8x+55=x | | -7-4n-n=5n-3n | | 4x+5=114 | | 3/5j=60 | | 3/5h=60 | | -4x+5=-4x- | | 1/6j=14 | | 7/10a=49 | | 10/x-17=-12 | | 3/4h=22.5 | | 2/5j=200 | | 18x-15=25 | | e/15-2=1 | | e/15=3 | | 17-2e=9 | | 3.2=12.8-6v | | 5^10-4x=25 | | 5+n/6=13 | | 0.5-15x=9 | | -3=t/4-6 | | 15x=201 | | 2(x+6)+40=4 | | 8c=216 | | x-(-53)=35 |

Equations solver categories